Symplectic Microgeometry Ii: Generating Functions
نویسندگان
چکیده
We adapt the notion of generating functions for lagrangian submanifolds to symplectic microgeometry. We show that a symplectic micromorphism always admits a global generating function. As an application, we describe hamiltonian flows as special symplectic micromorphisms whose local generating functions are the solutions of Hamilton-Jacobi equations. We obtain a purely categorical formulation of the temporal evolution in classical mechanics.
منابع مشابه
Symplectic Microgeometry I: Micromorphisms
We introduce the notion of symplectic microfolds and symplectic micromorphisms between them. They form a monoidal category, which is a version of the “category” of symplectic manifolds and canonical relations obtained by localizing them around lagrangian submanifolds in the spirit of Milnor’s microbundles.
متن کاملSymplectic Microgeometry Iii: Monoids
We show that the category of Poisson manifolds and Poisson maps, the category of symplectic microgroupoids and lagrangian submicrogroupoids (as morphisms), and the category of monoids and monoid morphisms in the microsymplectic category are equivalent symmetric monoidal categories.
متن کاملTheta functions on covers of symplectic groups
We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$. This representation is obtained from the residues of Eisenstein series on this group. If $r$ is odd, $nle r
متن کاملLocal Calculation of Hofer’s Metric and Applications to Beam Physics
Hofer’s metric is a very interesting way of measuring distances between compactly supported Hamiltonian symplectic maps. Unfortunately, it is not known yet how to compute it in general, for example for symplectic maps far away from each other. It is known that Hofer’s metric is locally flat, and it can be computed by the so-called oscillation norm of the difference between the Poincare generati...
متن کاملOf Extended Generating Functions
The time t maps of Hamiltonian flows are symplectic. The order n Taylor series approximation with respect to initial conditions of such a map is symplectic through terms of order n. Given an order n Hamiltonian symplectic map, there are a variety of procedures, called symplectification methods, which produce exactly symplectic maps with Taylor series that agree with the initial Taylor map throu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011